Реле времени

Классификация таймеров

Распределение может быть сделано по различным признакам. Каждое реле времени требует наличия электропитания. Некоторые из устройств питаются из сети, в других используется аккумулятор. Есть модели, в которых предусмотрены оба способа.

В видео рассказано о таймере включения света для аквариума:

Видео описание

Таймер механический включения и выключения освещения в аквариуме.

В первом случае при сбое электропитания возможно возникновение проблем. Однако такие таймеры могут работать очень долго, не требуя к себе особого внимания. Устройства, использующие аккумулятор, обладают значительной степенью автономности, но действуют в течение ограниченного времени, до тех пор, пока заряд не закончится.


Программируемый таймер для управления бытовыми приборамиИсточник 220.guru

Для каждого такого устройства на практике устанавливается определённый режим работы

Важно, чтобы тот, который необходим владельцу был предусмотрен для этого прибора. Наиболее распространёнными являются следующие:

  • Таймер универсального назначения позволяет планировать алгоритмы работы в широких пределах.
  • Может быть использована случайная коммутация.
  • Применяется обратный отсчёт времени.
  • Ведётся астрономический отсчёт.
  • Использование недельных ритмов. Например, если требуется регулярно выполнять действия в определённые дни недели.
  • Действия на основе суточных ритмов.

Когда говорят об астрономическом отсчёте речь идёт о таймере для включения света с наступлением тёмного времени суток. При этом прибор отслеживает продолжительность дня в течение года. Каждый раз включение света происходит тогда, когда в этом появляется необходимость.


Настройка реле времениИсточник kupisantehniky.ru

Устройства можно классифицировать в зависимости от применяемого способа монтажа. Могут использоваться следующие варианты:

  • монтаж с использованием DIN-рейки;
  • стационарные таймеры;
  • выполнение монтажа в распределительном щите;
  • установка таймера совместно с розеткой.

При приобретении нужно учитывать класс защищённости прибора от внешних условий

Также важно принимать во внимание мощность подключаемых к таймеру приборов


Таймер с дисплеем для программирования и управления работойИсточник kupisantehniky.ru

Как выбрать подходящую модель

Таймер должен соответствовать задачам, для которых его приобретают. При изучении предложенных вариантов нужно учитывать следующее:

На какое напряжение питания рассчитано изделие.
Тип управления при определении алгоритма работы устройства. Можно выбрать механический или электронный вариант.
Покупаемое реле времени предусматривает определённый вариант монтажа. Он может быть розеточным, с использованием распределительной коробки или другим. Нужно выбрать тот, который подойдёт для применения.
Нужно учитывать степень защищённости прибора

В некоторых случаях могут, например, потребоваться устройства, имеющие влагозащиту.
Нужно обратить внимание на длительность периода, в течение которого можно запрограммировать таймер.

Если речь идёт о варианте, использующем сетевое питание, то нужно, чтобы он был не чувствителен к сбоям напряжения. В этих устройствах может быть предоставлен большой набор разнообразных функций. Необходимо убедиться, что среди них есть те, которые нужны. 


Розетка с пультом управленияИсточник kupisantehniky.ru

Заключение

При выборе реле времени нужно решить, для выполнения каких задач покупается прибор

Важно, чтобы он имел подходящий уровень точности и был рассчитан на работу в соответствующем временном диапазоне. Нет необходимости покупать более сложный аппарат, чем нужно

Мощность таймера не должна быть меньше той, которые имеют подключаемые приборы. Правильно выбранный прибор поможет сделать жизнь покупателя намного комфортнее.

Разновидности устройства

Основные виды реле времени от применяемых технологий в их конструкции:

Самые надежные и использующиеся длительное время – часовые или анкерные.Их работа обеспечивается пружинным механизмом, заводящимся руками или автоматически, при подаче напряжения на устройство. Отличительный признак такого прибора – наличие механической надстроечной шкалы, выставляя значения на которой, устанавливают время и период включения и прерывания линии тока для потребителя.Устройство часового реле

Моторные.Чем-то такие реле похожи на анкерные, вот только для хода часов используется не пружина, а маленький электродвигатель. От него и работает механизм прибора – он обеспечивает вращение всех шестеренок редуктора, осуществляющих перемещение замыкающих контактов в состояние «включено» или «отсоединено». Сами параметры срабатывания выставляются вручную специальными фиксаторами.

Простое, моторное реле времени

Пневматические или гидравлические. Применяются в основном в производстве, для управления станками. Замедление механизма включения обеспечивается специальным воздушным или жидкостным демпфером, замедляющим ход толкателя в электромагните, который в свою очередь и соединяет контакты. Период срабатывания зависит от объема рабочего тела в ограничивающей камере. Когда при включенном электромагните толкатель жмет на мембрану, та не сразу прогибается – сначала должен выйти воздух или жидкость из камеры демпфера под ней, и только тогда он дойдет до финиша и соединит клеммы. Регулируя скорость истечения рабочего тела, и устанавливают временные промежутки срабатывания пневматических или гидравлических реле.

Устройство пневматического реле

Электромагнитные.Уже более близкие к современным и до сих пор часто используемые реле времени. Их принцип действия – электромагнит, который при наборе на магнитный сердечник необходимой силы поля соединяет с его с помощью контакты прохождения питания клиентского устройства. Пауза срабатывания обеспечивается дополнительной катушкой (гильзой), одетой на тот же магнитный якорь, но с обратным ходом тока. Время действия такого реле основано на эффекте остаточного магнетизма сердечника, который продолжает создавать поле еще некоторое время после отключения основной обмотки.

Устройство электромагнитного реле

Электронные.Условно, они все построены на периоде заряда конденсатора, замедление которого обеспечивается характеристиками нагрузки-резистора. При достижении полной емкости конденсатор перестает пропускать через себя ток, что дает возможность открыться полупроводниковому или ламповому элементу, от которого уже и срабатывает включение или разрыв питания клиентского устройства. После разряда конденсатора происходит обратная отсечка потребителя. Устройства на основе таких элементов узнать достаточно просто – на их поверхности находятся регуляторы, выполненные или в виде пазов под отвертки, или рукояток, которыми контролируется параметры сопротивления резисторов в цепи.

Простая схема электронного реле

Логические.Реле времени с такой основой используют для своей работы микросхемы, в составе которых находятся логические сумматоры, отсчитывающие время в зависимости от пройденного количества тактов задающего генератора. В момент, когда достигаются установленные значения, «процессор» устройства подает сигнал на исполнительный контур, который в свою очередь производит подключение питания потребляющей части. После того, как количество тактов достигает второго заданного прибору значения – линия прерывается. Такой класс оборудования легко узнать по наличию цифровых дисплеев и множества клавиш, которыми и программируются требуемые параметры.

Схема простого логического реле

Реле времени своими руками

Разберем наиболее простые способы изготовить замедляющие системы своими руками.

12 Вольт

Нам понадобится печатная плата, паяльник, небольшой набор из конденсатора, исполняющего реле, транзисторы, эмиттеры.

Схема составляется таким образом, чтобы при отключенной кнопке напряжение на обкладках емкости отсутствовало. Во время короткого замыкания кнопки конденсатор быстро заряжается, а затем начинает разряжаться, подавая напряжение через транзисторы и эмиттеры.

При этом релюшка будет замкнута или разомкнута до тех пор, пока на конденсаторе не останется несколько вольт. 

Регулировать длительность разрядки конденсатора можно его емкостью или величиной сопротивления подключенной цепи.

Порядок работ:

  • подготавливается плата;
  • дорожки пролуживаются;
  • распаиваются транзисторы, диоды и реле.

220 вольт

Принципиально такая схема не очень отличается от предыдущей. Ток проходит через диодный мост и заряжает конденсатор. В это время зажигается лампа, которая выполняет роль нагрузки. Затем происходит процесс разрядки и срабатывания таймера. Порядок действий при сборке и набор инструментов такой же, как и при первой варианте.

Схема NE555

По-другому микросхема 555 называется интегральным таймером. Ее использование гарантирует стабильность выдерживания временного промежутка, устройство не реагирует на перепады напряжения в сети.

При выключенной кнопке один из конденсаторов разряжен, и система может находиться в таком состоянии неопределенное время. После нажатия кнопки начинает заряжаться емкость. Через определенное время происходит его разрядка через транзистор схемы.

Разрядный транзистор открывается, и система переходит в первоначальное состояние.

Существует 3 режима работы:

  • моностабильный. При входном сигнале она включается, выходит волна определенной длины и выключается в ожидании нового сигнала;
  • циклический. Через заданные промежутки схема переходит в рабочий режим и отключается;
  • бистабильный. Или выключатель (нажал кнопку работает, отжал – не работает).

Таймер с задержкой включения

После подачи напряжения происходит зарядка емкости, открывается транзистор, в тоже время два других закрыты. Поэтому нагрузка на выходе отсутствует. Во время разрядки конденсатора первый транзистор закрывается, открываются два других. Питание начинает поступать на реле, выходные контакты замыкаются.

Период зависит от емкости конденсатора, переменного резистора.

Цикличное устройство

Чаще всего используются счетчики генераторы. Первый из которых вырабатывает сигнал через заданные промежутки времени, а второй принимает их, задавая через определенное их количество логические ноль или единицу.

Создается все это с использованием контролера, схем можно найти много, но потребуют они некоторых знаний радиотехники.

Другой вариант – полная разрядка или зарядка емкости с помощью микросхемы подает сигнал на управляющий транзистор, который работает в режиме ключа.

На что обращать внимание при выборе таймера времени электронного

При покупке следует определиться не только с типом прибора, но также обратить внимание на основные технические характеристики и параметры, влияющие на работу устройства:

  1. Временные рамки программирования. Здесь всё просто. Если требуется управлять напряжением только на протяжении суток, выбирается простая механическая модель. При необходимости недельного или даже месячного управления, выбирается электронный вариант с наличием соответствующих опций.
  2. Точность. Данная характеристика больше актуальна для механических моделей. Хотя для большинства задач, которые ставятся перед таймерами, точность до секунд не важна. Для оптимального показателя необходимо выбирать изделия проверенных производителей.
  3. Нагрузка. В зависимости от нагрузки сети необходимо выбирать соответствующее устройство. Есть модели, которые выдерживают нагрузку в 7 А, 10 А и 16 А. Выбор показателя будет зависеть от мощности, которую потребляет устройство, запитанное через данную розетку.
  4. Количество линий программирования. Этот параметр показывает, сколько устройств может быть замкнуто на таймер. Самые простые образцы поддерживают всего один прибор, более продвинутые модели имеют 2 и более линии.
  5. Пыле- и влагозащищённость. Некоторые устройства могут иметь дополнительную защиту от негативного воздействия факторов внешней среды. Это характерно для таймеров, предназначенных к использованию на открытом воздухе.

ФОТО:  images.esellerpro.com Существуют образцы, имеющие надёжную защиту от внешних факторов для уличного использования

Критерии грамотного выбора

Практически во всех изделиях этого типа нагрузочная способность составляет 16 А с частотой в 50 Гц для переменного тока в 230 В. Но некоторые нерадивые производители в стремлении сэкономить используют размыкающие устройства низкого качества. В них проводники не рассчитаны на большой пусковой ток поскольку отличаются малым сечением.

Розетки-таймеры сомнительного производства не стоит использовать для управления полуторакиловатными водонагревателями и другими потребителями большой мощности

При выборе розетки с таймером следует ориентироваться на ряд параметров:

  1. Максимальное время программирования либо же диапазон отрезков времени.
  2. Точность хода часов прибора и максимальный предел временной погрешности при выполнении операций коммутирования.
  3. Дискретность задания времени переключения (параметр может составлять от двух секунд до получаса).
  4. Нагрузочная способность прибора (какие максимально допустимые коммутируемые токи).
  5. Максимальное количество программирования коммутаций за сутки.

Все технические характеристики прописаны в паспорте к изделию. Учитывайте, что активная и реактивная нагрузка подключаемого через коммутатор оборудования не должна превышать значений, обозначенных производителем в приложенной к розетке документации.

Пример: при включении обогревательного прибора мощностью в 5 кВт сила тока будет равна приблизительно 25 А, что для 16-амперной розетки будет губительно.

Каждая из таких розеток наделена параметрами, обеспечивающими необходимый уровень защиты. В продаже встречаются модели, оборудованные пыле- и влагоотталкивающим корпусом, оснащенные защитными крышками и шторками.

Выбирая модель, обращайте внимание, на какое количество и продолжительность интервалов включения/выключения они рассчитаны

Планируя использовать коммутаторы вне помещений, стоит выбирать изделия с влагозащищенным корпусом, параметр IP которых составляет 44, 54 или 65. Руководствуйтесь принципом – чем выше IP тем лучше защита. Благодаря термо- и влагоустойчивому покрытию корпусов такие приборы способны работать в температурном диапазоне от -10 до +40°С.

Выбирая розетку для жилища, где есть маленькие любознательные домочадцы, стоит рассмотреть вариант приобретения прибора, оснащенного функцией «защита от детей». Устройства этого типа оборудованы специальными задвижками, которые препятствуют прямому соприкосновению инородных предметов с электроконтактами.

Если ориентироваться на производителей, то российском рынке наибольшей популярностью пользуется продукция ведущих торговых марок: «Legrand», «ABB», «Berker», «Wessen», «Schneider Electric».

Из более бюджетных моделей стоит рассмотреть продукцию торговых марок «Feron Company» и «Expert», которые по качеству ничуть не уступают европейским производителям

Об умных розетках с дистанционным управлением и ориентирах их выбора вы сможете прочитать здесь.

Как настроить механический таймер включения и выключения электроприборов

Механический таймер старого образца может содержать пружину для обеспечения движения барабана с метками с течением времени. Они обычно просты в управлении: выкрутил барабан на нужное время и воткнул в розетку — время пошло.

Нажимая на синие сегменты, можно регулировать время

Более современные модели не используют пружину, вместо неё стоит тихоходный двигатель. Он вращает барабан с сегментами, нажатием которых регулируется необходимое время. Сегменты могут быть разбиты по 15 или 30 минут. Таким образом, нажимая на определённые сегменты, можно установить любой диапазон или срок включения и выключения розетки.

Одновибратор на 555 таймере. Описание

В предыдущей статье был рассмотрен одновибратор построенный на логических элементах микросхемы К155ЛА3. В данной статье изучим функционирование одновибратор на 555 таймере.

В первоначальном состоянии емкость C1 заряжена от транзистора входящего в состав таймера 555. В момент поступления на вход 2 таймера 555 короткого импульса отрицательного характера, переключается триггер, выключая короткозамкнутую цепь конденсатора C1.

Одновременно с этим на выходе 3 таймера 555 появляется напряжение высокого уровня. По экспоненциальному закону на емкости C1 растет напряжение заряда с постоянной времени Т = С1*R1.

Описание работы одновибратора на NE555

При достижении потенциала на конденсаторе примерно 60 % от напряжения питания схемы, компаратор переводит триггер в свое первоначальное положение. Сам триггер, тем временем, резко разряжает конденсатор, в результате чего на выходе 3 таймера 555 появляется электрический сигнал низкого уровня.

Подобная схема одновибратора активизируется импульсом отрицательного характера, имеющего около 30% напряжения источника питания. Одновибратор будет находиться в таком состоянии на протяжении всего заданного временного периода, даже если в этот момент на вход будут поступать еще импульсы. Временной интервал, в процесс которого на выходе 3 таймера 555 будет находиться высокий логический уровень, можно вычислить по следующей формуле: Т = 1,1*R1*С1.

Следует отметить, что быстрота заряда конденсатора и величина напряжения, при котором срабатывает компаратор, прямо пропорциональна Uпит которое не оказывает никакого действия на продолжительность выходного импульса.

При подаче отрицательного сигнала на вывод 4 (сброс) микросхемы 555, конденсатор С1 будет разряжен и цикл работы одновибратора начнется заново. Положительный фронт импульса поступающего на вывод сброса является началом нового цикла работы одновибратора. До тех пор пока отрицательный импульс находится на выводе сброса, на выходе одновибратора будет низкий уровень. В случае если в режим сброса нет необходимости, то данный контакт нужно подсоединить с плюсом источника питания, для того чтобы предупредить возможные нестабильные состояния схемы.

www.joyta.ru

Защита от помех DC

Раздельное питание

Один из лучших способов защититься от помех по питанию – питать силовую и логическую части от отдельных источников питания: хороший малошумящий источник питания на микроконтроллер и модули/сенсоры, и отдельный на силовую часть. В автономных устройствах иногда ставят отдельный аккумулятор на питание логики, и отдельный мощный – на силовую часть, потому что стабильность и надёжность работы очень важна.

Искрогасящие цепи DC

При размыкании контактов в цепи питания индуктивной нагрузки происходит так называемый индуктивный выброс, который резко подбрасывает напряжение в цепи вплоть до того, что между контактами реле или выключателя может проскочить электрическая дуга (искра). В дуге нет ничего хорошего – она выжигает частички металла контактов, из за чего они изнашиваются и со временем приходят в негодность. Также такой скачок в цепи провоцирует электромагнитный выброс, который может навести в электронном устройстве сильные помехи и привести к сбоям или даже поломке! Самое опасное, что индуктивной нагрузкой может являться сам провод: вы наверняка видели, как искрит обычный выключатель света в комнате. Лампочка – не индуктивная нагрузка, но идущий к ней провод имеет индуктивность. Для защиты от выбросов ЭДС самоиндукции в цепи постоянного тока используют обыкновенный диод, установленный встречно-параллельно нагрузке и максимально близко к ней. Диод просто закоротит на себя выброс, и все дела:

Где VD – защитный диод, U1 – выключатель (транзистор, реле), а R и L схематично олицетворяют индуктивную нагрузку. Диод нужно ОБЯЗАТЕЛЬНО ставить при управлении индуктивной нагрузкой (электромотор, соленоид, клапан, электромагнит, катушка реле) при помощи транзистора, то есть вот так:

При управлении ШИМ сигналом рекомендуется ставить быстродействующие диоды (например серии 1N49xx) или диоды Шоттки (например серии 1N58xx), максимальный ток диода должен быть больше или равен максимальному току нагрузки.

Фильтры

Если силовая часть питается от одного источника с микроконтроллером, то помехи по питанию неизбежны. Простейший способ защитить МК от таких помех – конденсаторы по питанию как можно ближе к МК: электролит 6.3V 470 uF (мкФ) и керамический на 0.1-1 мкФ, они сгладят короткие просадки напряжения. Кстати, электролит с низким ESR справится с такой задачей максимально качественно.

Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:

Подробнее о расчёте фильтров можно почитать здесь.

Создаем реле времени на 12 и 220 вольт

Транзисторные и микросхемные таймеры работают при напряжении 12 вольт. Для использования при нагрузках 220 вольт устанавливают диодные устройства с магнитным пускателем.

Для сборки контроллера с выходом на 220 вольт запасаются:

  • тремя сопротивлениями;
  • четырьмя диодами (током более 1 А и обратным напряжением 400 В);
  • конденсатором с показателем 0,47мФ;
  • тирристором;
  • кнопкой пуска.

После нажатия кнопки замыкается сеть, и конденсатор начинает заряжаться. Тирристор, который во время зарядки был открыт, закрывается после зарядки конденсатора. В результате подача тока прекращается, техника отключается. Коррекция проводится выбором сопротивления R3 и мощностью конденсатора.

Изготовление на диодах

Для монтажа системы на диодах необходимые элементы:

  • 3 резистора;
  • 2 диода, рассчитанные на ток 1 А;
  • тиристор ВТ 151;
  • пусковое устройство.

Выключатель и один контакт диодного моста подключают к питанию на 220 вольт. Второй провод моста подсоединяют к выключателю. Тирристор соединяют с сопротивлениями на 200 и 1 500 Ом и диодом. К конденсатору подключают вторые выводы диода и 200-го резистора. Сопротивление на 4300 Ом включают параллельно конденсатору.

С помощью транзисторов

Для сборки схемы на транзисторах необходимо запастись:

  • конденсатором;
  • 2 транзисторами;
  • тремя резисторами (номинал 100 кОм К1 и 2 модели R2, R3);
  • кнопкой.

После включения кнопки заряжается конденсатор через резисторы r2 и r3 и эммитер транзистора. При этом на сопротивлении падает напряжение, так как транзистор открывается. После открытия второго транзистора срабатывает реле.

По мере зарядки емкости ток падает, а с ним напряжение на сопротивление до того показателя, при котором закрывается транзистор и отпускается реле. Для нового запуска необходима полная разрядка емкости, ее выполняют нажатием кнопки.

Создание на базе микросхем

Чтобы создать систему на основании микросхем потребуются:

  • 3 резистора;
  • диод;
  • микросхема TL431;
  • кнопка;
  • емкости.

Контакт реле подключают параллельно кнопке, к которой подключают «+» источника питания. Второй контакт реле выводят на резистор 100 Ом. Резистор также соединяют с сопротивлениями.

Второй и третий вывод микросхемы соединяют с резистором на 510 Ом и диодом соответственно. Последний контакт реле также подключается к полупроводнику, с исполняющим устройством. «–» источника питания подключают к сопротивлению на 510 Ом.

С использованием таймера ne555

Наиболее простая в исполнении схема с интегральным таймером NE555, поэтому такой вариант используется во многих элекросхемах. Для монтажа контроллера времени потребуются:

  • плата 35х65;
  • файл программы Sprint Layout;
  • резистор;
  • винтовые клеммники;
  • точечный паяльник;
  • транзистор;
  • диод.

Схема монтируется на плате, резистор располагается на ее поверхности либо выводится проводами. В плате есть места для винтовых клеммников. После впаивания комплектующих, излишки пайки удаляют и проверяют контакты. Для защиты транзистора параллельно реле монтируется диод. В устройстве устанавливается время срабатывания. Если к выходу подключить реле, можно корректировать нагрузку.

  • пользователь нажимает кнопку;
  • схема замыкается и появляется напряжение;
  • загорается лампочка и начинается отсчет времени;
  • после истечения установленного периода лампочка гаснет, напряжение становится равным 0.

Пользователь может регулировать интервал работы часового механизма в пределах 0 – 4 минуты, с конденсатором – 10 минут. Транзисторы, используемые в схеме – биполярные устройства малой и средней мощности типа n-p-n. Задержка зависит от сопротивлений и конденсатора.

Многофункциональные устройства

Многофункциональные контроллеры времени выполняют:

  • отсчет времени в двух вариантах одновременно в течение одного срока;
  • параллельный отсчет временных отрезков постоянно;
  • обратный отсчет;
  • функцию секундомера;
  • 2 варианта автозапуска (первый вариант после нажатия кнопки пуск, второй – после подведения тока и истечения установленного периода).

Для работы устройства в нем устанавливается блок памяти, в котором сохраняются установки и последующие изменения.

Беспроводные датчики движения

Для автономной работы без присоединения к электрической сети используются беспроводные ДД. Их питание может осуществляться от солнечных батарей, аккумуляторов или батареек. Срок эксплуатации без подзарядки составляет от 6 до 12 месяцев. В зависимости от ценовой категории, возможны различные варианты настроек.

Так, дешевые беспроводные модели устанавливаются только в помещении. Потому что обладают слабой степенью защиты от воздействия внешних факторов. Отсутствует детектор иммунитета от домашних животных. Дальность передачи сигнала до 100 метров.

А вот дорогие экземпляры монтируются не только в помещении, но и на улице. Работают при любых климатических условиях. Неблагоприятные проявления погоды в виде дождя, снега или воздействие прямых солнечных лучей никаким образом не влияют на производительность датчика. Также присутствует настройка игнорирования объектов, вес которых до 40 килограмм (домашних питомцев). К тому же может использоваться смешанный режим работы.

Существуют модели типа «шторка». Они прослеживают узкую ограниченную площадь. Часто применяются возле дверей или окон, чтобы предотвратить несанкционированное проникновение посторонних лиц внутрь помещения.

Принцип работы заключается в передаче радиосигнала на определенной частоте к приемнику. Благодаря защищенному радиосигналу исключается возможность воздействия помех других частот. Если присутствует прямая видимость между блоком управления и датчиком движения, то расстояние передачи сигнала может достигать 500 метров.

Блок сигнализации имеет встроенный GSM-модуль с сим-картой. При срабатывании ДД, передается сигнал на блок, затем отсылается смс-сообщение на телефон, номер которого заранее внесен в память устройства. Таким образом, можно обезопасить любое помещение или, к примеру, свой гараж, находящийся далеко от дома.

Подводя итоги, можно выделить несколько правил, придерживаясь которых настраивать будет легко и просто:

  • Максимально убрать все осветительные приборы, которые могут повлиять на корректную работу ДД.
  • Не ставить рядом нагревательные приборы, в том числе кондиционеры. Потому что любые датчики движения чувствительно относятся к движению потоков воздуха.
  • Установить прибор так, чтобы никакие большие предметы не заслоняли ему обзор. Тем самым можно увеличить рабочую площадь устройства.

Предыдущая
Датчики движенияКак правильно подключать датчик движения
Следующая
Датчики движенияКак выбрать и настроить лампу с датчиком движения

Спасибо, помогло!2Не помогло1

Принципиальные схемы монтажа

Существует несколько схем подключения выключателя и внешнего датчика движения в контур питания приборов освещения. В общих чертах: сенсор вставляется в разрыв провода с фазой. На его корпусе есть три клеммы. На «L» и «N» подсоединяются соответствующие жилы кабеля электросети, а с третьего вывода провод отправляется на лампу.

Простейшая схема с датчиком движения, но без клавишного выключателя – свет включаться будет только от встроенного в прибор сенсора

Если одного автоматического детектора мало и нужен еще ручной способ включения освещения, то «ключ» в цепь можно включить двумя способами. В первом такой выключатель вставляется в фазовый провод, идущий к датчику от щитка. Когда он разомкнут, сенсор просто не работает и напряжения на лампочку не подает.

Второй вариант предполагает вставку выключателя в линию от фазы до ввода на электролампу. При замыкании такого «ключа» свет будет гореть даже при не сработавшем датчике.

Две схемы с разными способами подсоединения клавишного выключателя в контур с нагрузкой (электроприбором освещения) и сенсором движения

Если требуется установить несколько детекторов, то они между собой соединяются параллельно. На лампу питающий провод идет с каждого из них. Свет появится при срабатывании любого из датчиков. Если это решение кажется излишне сложным, лучше приобрести лампочки с встроенным датчиком движения.

Если осветительный прибор мощный или их несколько, то в цепь вместо лампочки следует установить магнитный пускатель с усилителем. А уже посредством него запитать отдельный контур освещения. В этом случае детектор можно выбрать маломощный и более дешевый.

Большинство энергосберегающих ламп быстро перегорают при частых включениях и выключениях напряжения. Поэтому подключать их через датчик движения не всегда целесообразно, так как они будут слишком часто выходить из строя. Экономии от применения таких лампочек в результате получится ноль.

Чтобы избежать проблем с перегоранием дорогих ламп, после датчика движения перед ними необходимо ставить блок защиты с мягким включением света. Благодаря отсутствию в электросети резких перепадов по напряжению электролампочки не будут “гореть” столь часто, как без подобного защитного устройства.

С маркировкой и правилами подбора умных выключателей ознакомит следующая статья, прочесть которую мы настойчиво советуем.

Выход твердотельного реле

Возможности переключения выхода твердотельного реле могут быть как переменного, так и постоянного тока, аналогичными его требованиям к входному напряжению. Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного (SPST-NO) режима работы электромеханического реле.

Для большинства твердотельных реле постоянного тока обычно используются твердотельные коммутационные устройства — силовые транзисторы, Дарлингтона и MOSFET, тогда как для твердотельного реле переменного тока, коммутационные устройства — это симисторные или двухсторонние тиристоры. Тиристоры предпочтительны из-за их высокого напряжения и тока. Один тиристор также может использоваться в схеме мостового выпрямителя, как показано на рисунке.

Наиболее распространенным применением твердотельных реле является переключение нагрузки переменного тока, будь то управление мощностью переменного тока для включения / выключения, затемнение света, управление скоростью двигателя или другие подобные приложения, где необходимо управление мощностью, эти нагрузки переменного тока может легко управляться с помощью постоянного тока низкого напряжения с помощью твердотельного реле, обеспечивающего длительный срок службы и высокие скорости переключения.

Одним из самых больших преимуществ твердотельных реле по сравнению с электромеханическим реле является его способность выключать «переменные» нагрузки переменного тока в точке нулевого тока нагрузки, тем самым полностью устраняя искрение, электрический шум и отскок контактов, связанные с обычными механическими реле и индуктивными нагрузками.

Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Тогда выход SSR никогда не сможет выключиться в середине пика синусоидальной волны.

Отключение при нулевом токе является основным преимуществом использования твердотельного реле, поскольку оно уменьшает электрические помехи и обратную эдс, связанные с переключением индуктивных нагрузок, которые видятся как искрение контактами электромеханического реле. Рассмотрим диаграмму формы выходного сигнала ниже типичного твердотельного реле переменного тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector