Чем отличается напряжение 220 от 380 вольт

Линейное и фазное напряжение – отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком – среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, – называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, – называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Какой кабель лучше использовать в квартире

На вопрос о том, какой провод нужен для электроплиты в квартире, однозначного ответа нет. Выбор должен основываться на сетевых нагрузках, мощности конструкции. Специалисты рекомендуют применить гибкий кабель с параметрами 3 на 4 миллиметра квадратных.

Также одним из часто задаваемых вопросов от желающих обзавестись электроплитой – это какая длина кабеля должна быть, чтобы можно было с лёгкостью подключить и передвинуть оборудование. Здесь мастера с многолетним опытом работы рекомендуют замерить расстояние между вашей плитой, розетками и электрощитом. Получив число, прибавьте к нему ещё 1-1,5 метра

Очень важно брать шнур с небольшим запасом

Что касается подключения духового шкафа, необходимо разобраться с состоянием нынешнего кабеля и измерить его сечение. Сечение кабеля духовки современного типа составляет около 2,5 миллиметров.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т.д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Проводить разводку проводки такого типа можно без использования профессионального оборудования и приборов, достаточно обычных отверток с индикаторами.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Перекос фаз. Что это такое и с чем он связан? Как исправить?

Одним из выдающихся благ цивилизации является электричество. Благодаря тому, что это открытие в наше время так распространено, жизнь общества в целом, и каждого человека в отдельности, значительно упростилась и стала более комфортной.

Вместе с тем, время от времени, в электросети могут возникать трудности, требующие решения. С ростом средней мощности бытовых приборов и техники, установленной в одном месте, например, в квартире, нередко возникает явление, называемое перекосом фаз.

В таких случаях, очень многие задаются вопросом, какие причины вызывают перекос фаз? И так, давайте разбираться.

Что же собой представляет перекос фаз

Трехфазную электрическую сеть в идеале можно представить равносторонним треугольником с нейтральной точкой в его середине.

   Перекос фаз

Он отражает работу силового трансформатора на подстанции, которая установлена в каждом микрорайоне города и предназначена для равномерного распределения электричества по всем потребителям. Стороны этого треугольника – это векторные линии, соединяющие его вершины. Обозначив вершины точками A, B, C и нейтралью N, можно составить таблицу напряжений и зависимость между ними:

  • AB=BC=CA=380 В
  • AN=BN=CN=220 В

При этом напряжения AB, BC, CA в 1,73 раза больше напряжений AN, BN, CN. Идеальный трехфазный генератор, который обычно используется для питания всех бытовых приборов и промышленных сетей, должен обеспечивать эти уровни напряжений в широком диапазоне нагрузок.

Причины перекоса фаз

Причин перекоса может быть несколько, однако, наиболее распространенной является причина, связанная с неправильной и неравномерно распределенной нагрузкой в фазах внутренних сетей. В случае возникновения перекоса на объекте с трехфазным питанием, это означает, что одна или две фазы работают с перегрузкой, тогда как другие фазы имеют гораздо меньшую нагрузку.

Однофазные потребители нередко попадают на одну фазу, и в этом случае перекос фаз образуется при одновременном включении большого количества бытовой техники. Первыми признаками перекоса могут быть бытовые приборы, мощность которых заметно упала, или они вообще перестали работать. Освещение становится тусклым, а лампы дневного света начинают мерцать.

Важно

Основная опасность ситуации состоит в том, что бытовые приборы начинают работать некорректно, и появляется реальная возможность поломок вплоть до полного выхода их из строя. Наибольшая часть негативных последствий приходится на различные виды электродвигателей, которые установлены почти во всех приборах.

После того, как выяснился вопрос, что такое перекос фаз и с чем он связан, необходимо рассмотреть основные способы борьбы с этим явлением. Следует сразу отметить, что данные способы не являются универсальными, а подходят только для конкретных ситуаций.

Устранение перекоса фаз

Для того, чтобы избежать перекос фаз, необходимо осуществить тщательное планирование всех мощностей и рассчитать все возможные нагрузки с их правильным распределением по фазам. Как правило, составляется подробный электропроект на квартиру или дом.

При эксплуатации необходимо выполнять проверку тока с помощью специальных тестеров. Если возникнет необходимость, должна быть выполнена переброска однофазных нагрузок с более загруженных фаз на менее загруженные.

Ток на каждой фазе трёхфазного автомата должен быть тщательно измерен, после чего нужно перераспределить однофазные нагрузки так, чтобы токи на каждой фазе были приблизительно равными.

Эта работа должна выполняться только профессионалом, имеющим специальное оборудование.

Защита от внешнего перекоса фаз может быть исполнена с помощью стабилизаторов напряжения. На каждую фазу устанавливают определённый стабилизатор. Это будет более эффективно, чем установка одного трёхфазного стабилизатора.

В заключение необходимо подчеркнуть, что перекос фаз может стать причиной повреждения или полного выхода из строя электроприборов. Следовательно, для её устранения необходимо установить стабилизаторы или привлечь профессионалов, которые квалифицированно спроектируют электросеть.

   Защита от перенапряжения. Что поможет защитить сеть?

   Источник бесперебойного питания для частного дома.

Фаза тока.

У новичков в мире электрики и домовладельцев иногда возникает вопрос: что такое фаза тока в бытовой электропроводке. Связано это с необходимостью починить какой-либо электроприбор. В возникшей ситуации наиболее приоритетной задачей мастера должно стать соблюдение правил техники безопасности, а не проявление прикладных навыков и умений. Знание элементарных законов функционирования тока и процессов, проходящих внутри бытовых электроприборов не только поможет справиться с большинством неисправностей, возникающих в них, но и сделает этот процесс наиболее безопасным.

Конструкторы и инженеры делают все возможное, чтобы предотвратить несчастный случай при работе с электричеством в быту. Задача потребителя сводится к соблюдению предписанных норм.

Далее мы рассмотрим:

  • однофазный ток;
  • двухфазный ток;
  • трехфазный ток.

Соотношения фазного и линейного напряжения

Соотношение между напряжением линейным и фазным составляет 1,73. То есть при ста процентах мощности ЛН, напряжение фазы будет 58%. То есть, ЛН превышает ФН в 1,73 раза и при этом стабильно.

ФН и ЛН, отличие и соотношение

Напряжение в трёхфазной цепи оценивается по параметрам линейной составляющей. Обычно оно 380 вольт и тождественно 220 вольтам фазной компоненты сети трёхфазного электротока. В электрических сетях, где имеется четыре провода, напряжение 3-фазного тока обозначается 380/220В. Это позволяет подключить к подобной сети оборудование с 1-фазным потреблением электричества 220В и мощных приборов, которые могут работать от 380В.

Универсальной и приемлемой в большинстве случаев является трёхфазная цепь 380/220В 0-вым проводом. Электроприборы, которые функционируют от однофазного напряженья 220В, могут при подсоединении к паре проводов ФН питаться от ЛН.

Электрооборудование, которое запитывается от трёхфазной сети может работать, только если имеется подсоединение одновременно к 3-м выводам различных фаз. Тогда заземление не обязательно, но если изоляционный материал провода будет повреждён, то отсутствие 0-ого значительно увеличивает опасность удара электрическим током.

Важно! При понижении ЛН меняются величины ФН. При уже выясненном значении междуфазного напряжения определить величину ФН труда не составит

Перекос по фазам в трехфазной сети

В трехфазной сети силового кабеля периодически возникает такое явление, как перекос по фазам. Это может привести к значительному падению мощности в электрооборудовании (электродвигателе, трансформаторе) и выходу их из строя. В этой статье мы расскажем, что такое перекос фаз в трехфазной сети, почему происходит это явление и какие имеет последствия.

Вообще перекос по фазам – явление достаточно распространенное. И если оно остается в рамках допустимых значений, указанных в ГОСТ и ПУЭ, то большой беды в этом нет. Так, максимальная разница между токами проводника с наименьшей нагрузкой и токами проводника с наибольшей составляет 30% – это значение в пределах нормы. Для панелей ВРУ оно составляет 15%.

Все в том же ГОСТ указано, что максимальная разница по фазам в обратной последовательности должна составлять 2%.

Почему возникает перекос по фазам

Обратите внимание

Этому есть несколько причин. Основная – неравномерное и несбалансированное распределение фазовой нагрузки, когда одна фаза получает избыточное питание, а две другие, соответственно, недостаточное.

В однофазной сети нагрузка также может меняться, например, при одновременном включении нескольких мощных электроприборов. Тогда мощность сети сразу падает, оборудование перестает работать или же выходит из строя.

Особенно сильно страдают электродвигатели. Диагностировать проблему и узнать, где именно происходит перекос по фазам можно с помощью токоизмерительных клещей.

Трехфазная электрическая сеть имеет заземленную нейтральную жилу, которая выравнивает перекос, если таковой случился. Но если она обрывается, роль нейтральной жилы берет на себя одна из фазовых. И в этом случае на ней будет 380 В, а на других жилах – 127 и меньше.

Негативные последствия перекоса

Негативные последствия перекоса по фазам можно разделить на три типа:

  1. Повреждение электроприборов, вывод их из строя.

  2. Повреждение генераторов и трансформаторов электросети.

  3. Увеличение расходов на эксплуатацию электросети, снижение ее безопасности и надежности.

Из-за того что электроэнергия распределяется по проводникам неравномерно, в электросети значительно увеличивается потребление электричества. Трехфазная сеть, у которой образовалась несимметрия, может снизить срок эксплуатации электроприборов и бытовой техники.

Неравномерное распределение электричества заметно повышает его расход в сети. А вот срок эксплуатации бытовой и цифровой техники наоборот, может снизиться.

Если мы говорим об автономном электрогенераторе, то у него повысится расход топлива, и так же ухудшится надежность.

Как бы то ни было, все эти процессы негативного свойства, и чтобы их избежать, необходимо заранее предпринять меры по защите.

Первой и одной из наиболее распространенных защитных мер является установка в сеть стабилизатора напряжения. Для установки в трехфазную сеть используются стабилизаторы, состоящие из трех однофазных. Однако нейтрализовать перекос всегда и везде они не могут, поэтому применяются дополнительные меры:

  • правильное проектирование с учетом всех современных правил и требований;
  • применение приборов, которые способны автоматически выравнивать нагрузку;
  • изменение текущей схемы работы электросети, в том числе и изменение мощности потребителей, если это возможно;
  • установка реле контроля фаз и напряжения – устройства, которое автоматически отключит этот элемент электросети при перекосе по фазам.

Характеристики трехфазной системы

Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.

При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:

Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.

Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:

Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х Uл х Iф х cosφ.

Другим распространенным способом фазного соединения считается «треугольник».

Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.

Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:

  • Полная мощность: S = 3 х Sф = √3 х U х I;
  • Активная мощность: Р = √3 х U х I х cosφ;
  • Реактивная мощность: Q = √3 х U х I х sinφ.

На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.

  • Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
  • Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
  • Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.

Схемы подключения

Есть две схемы подключения источников напряжения (генераторов) в сеть:

  • «треугольником»;
  • «звездой».

Когда выполняется подключение «звездой», начало обмоток генератора соединены в одной точке. Оно не дает возможности увеличения мощности. А подключение по схеме «треугольник» — это когда обмотки соединяются последовательно, а именно, начало обмотки одной фазы соединяется с концом обмотки другой. Это дает способность в три раза увеличить напряжение.

Схемы подключения «звезда», «треугольник»:

Для лучшего понимания схем подключения специалисты дают определение, что такое фазные и линейные токи:

линейный ток — это ток, который протекает в подводнике соединения источника электрической энергии и приемника (нагрузки);

Токи линейные и фазные:

фазный ток — это ток, протекающий в каждой обмотке источника электрической энергии или в обмотках нагрузки.

Линейные и фазные токи имеют значение, когда есть несимметричная нагрузка на источник (генератор), это часто встречается в процессе подключения объектов к электроснабжению. Все параметры, относящиеся к линии, — это линейные напряжения и токи, а относящиеся к фазе, — параметры фазных величин.

Из соединения «звезда» видно, что линейные токи имеют такие же параметры, как и фазные. Когда система симметрична, необходимость в нейтральном проводе отпадает, на практике он поддерживает симметрию источника, когда нагрузка несимметрична.

Из-за несимметричности подключаемой нагрузки (а на практике это происходит с включением в цепь осветительных устройств) надо обеспечить независимую работу трем фазам цепи, это можно сделать и в трехпроводной линии, когда фазы приемника соединяются в треугольник.

Специалисты обращают внимание на тот факт, что когда понижается линейное напряжение, изменяются параметры фазного напряжения. Зная значение междуфазное напряжение, можно легко определить величину фазного напряжения

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое фаза тока и ноль? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» — это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Фаза, чем характеризуется

Фазой называют провод, находящийся под напряжением. Данный проводник располагается относительно другого, называемого ноль. Обоснованием для определения фазы является особенность устройства подстанций. Вырабатываемый на них переменный ток обладает одинаковой частотой в 50 Гц. В то же время ЭДС сдвинуты относительно друг друга во времени на определенный фазовый угол.

На первом рисунке схематично изображена система электроснабжения стандартного жилого объекта с тремя фазами и одним нулевым проводником. Второе изображение демонстрирует особенности подключения электричества к квартире от трансформатора. Потребитель в виде электроприбора обозначен, как Rн. В этом случае из трансформатора выходит два провода в виде фазы и ноля, к которому подключается заземление Змл. Третий рисунок показывает, как наглядно производится монтаж электроснабжения при отсутствии нулевого заземленного провода, проведенного в квартиру. Заземление в этой ситуации располагается непосредственно в жилом помещении.

Понятие фаза вытекает из определения электричества. Характер образования и течения переменного тока позволяют разобраться в природе и назначении фазного провода. Переменный ток отличается от постоянного значением и направлением, его можно наблюдать в розетках и прямых подключениях к электрощиткам. Основные характеристики переменного тока:

  • напряжение;
  • частота.

Однофазным током называют переменный ток, получаемый по средствам вращательного движения проводника или системы проводников в условиях магнитного потока. Провода при этом могут быть объединены в одной катушке. Для того чтобы передавать электроэнергию применяют два провода, включая фазу и ноль. Показатель напряжения между проводниками составляет 220 Вольт. Существует два способа подключения однофазного тока к потребителю:

  • двух-проводной;
  • трех-проводной.

В первом случае используется два проводника, по одному из которых передается фазный ток, а второй является нулевым. Это устаревшая схема электроснабжения, которая эксплуатировалась во времена СССР. Вторая методика предполагает наличие еще одного провода, который необходим для заземления, что позволяет предотвратить поражение человека электрическим током, выполнить отвод утечек электричества и исключить поломки электроприборов.

Двухфазный ток называют слиянием двух фаз, которые сдвинуты относительно друг друга. Угол сдвига может составлять 90 градусов. К примеру, можно взять две катушки с перпендикулярно расположенными осями, которые подключены к двухфазному току. В результате образуется система из двух магнитных полей. Результирующее магнитное поле будет обладать вектором, который вращается под одинаковым углом и с неизменной скоростью, создавая магнитное поле.

Трехфазный ток включает три фазы, каждая последующая из которых смещена относительно предыдущей на 120 градусов. Прокладка сетей электроснабжения в данном случае выполняется с помощью четырех кабелей, включая три фазы и ноль, либо добавляя еще один провод заземления. На выходе из распределительного щитка ток поступает к розеткам по одной фазе и ноль.

Напряжение в трехфазных цепях

В трёхфазных цепях выделяют два вида напряжения – линейное и фазное. Чтобы разобрать их отличия нужно взглянуть на векторную диаграмму и график. Ниже вы видите три вектора Ua, Ub, Uc – это вектора напряжений или фаз. Угол между ними 120°, иногда говорят 120 электрических градусов. Этот угол соответствует таковому в простейших электрических машинах между обмотками (полюсами).

Если отразить вектор Ub так, чтобы сохранился его угол наклона, но начало и конец поменялись местами, его знак изменится на противоположный. Тогда установим начала вектора –Ub в конец вектора Ua, расстояние между началом Ua и концом –Ub будет соответствовать вектору линейного напряжения Uл.

Простыми словами мы видим, что величина линейного напряжения больше чем фазного. Давайте разберем график напряжений в трёхфазной сети.

Красной вертикальной линией выделено линейное напряжение межу фазой 1 и фазой 2, а желтой линией выделено фазное амплитудное фазы 2.

КРАТКО:

Линейное напряжение измеряется между фазой и фазой, а фазное между фазой и нулём.

С точки зрения расчетов, разница между напряжениями обуславливается решением этой формулы:

Линейное напряжение больше фазного в √3 или в 1,73 раза.

Нагрузка к трёхфазной сети может быть подключена по трём или четырем проводам. Четвертый проводник – нулевой (нейтральный). В зависимости от типа сеть может быть с изолированной нейтралью и глухозаземленной. Вообще при равномерной нагрузке три фазы можно подать и без нулевого провода. Он нужен для того, чтобы напряжения и токи распределялись равномерно и не было перекоса фаз, а также в качестве защитного. В глухозаземленных сетях, при пробое на корпус выбьет автоматический разъединитель или перегорит предохранитель в щите, так вы избежите опасности поражения электрическим током.

Отлично то, что в такой сети у нас одновременно есть два напряжения, которые можно использовать исходя из требований нагрузки.

Для примера:

обратите внимание на электрический щиток в подъезде вашего дома. К вам приходит три фазы, а в квартиру заведена одна из них и ноль

Таким образом, вы получаете в розетках 220В (фазное), а между фазами в подъезде 380В (линейное).

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количеством потребителей;
  • состоянием линии и оборудования.

Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.

Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.

Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.

Сейчас воздушное подключение удобно делать с помощью самонесущего изолированного провода (СИП). Минимальное сечение алюминиевой жилы составляет 16 мм 2 , чего с большим запасом хватит для частного дома.

СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.

Почему на одной фазе 220 а трех фазах 380 вольт?

Почему 3 фазы по 220 вольт получается 380 вольт.

На одной фазе 220, а трех фазах 380 вольт, потому как вектора фаз имеют направление под углом 120 градусов друг к другу. Из-за этого в данном случае действует не арифметическое сложение, а геометрическое. Вот так это и объясняется.

3-фазное электрическое напряжение, которое на картинке ниже обозначено через R – S – T, при измерении с помощью вольтметра покажет 380 вольт. Но, если каждая фаза показывает 220 вольт, почему же так происходит?

Все очень просто. 380 вольт, 3 фазы, R – S – T образуют фазовые углы по 120 градусов каждый, см. картинку:

Любой из этих углов выглядит как треугольник

Используем правило треугольника: сумма углов в треугольнике равна 180 °, полученный угол RTN и TRN, соответственно (180 ° -120 °) / 2 = 30 градусов.

Таким образом получается, что напряжение 3 фаз – 380 вольт, в то время как одной фазы – 220.

Заморочили человеку голову какими-то треугольниками, градусами и чертежами. Нет в токе никаких геометрических фигур, это АБСТРАКЦИЯ.

А разница такая между фазами происходит из-за того, что между подачами напряжения в каждой из трёх фаз есть разница во времени на треть цикла.

К примеру, для упрощения, представим что частота нашей сети равна 1 Герцу (= 1 оборот генератора в секунду).

После запуска трёхфазного генератора, в первой фазе максимум толчка напряжения произойдёт в 0-й миллисекунде, во второй фазе в 333-й миллисекунде, в третьей фазе в 666-й.

Потом начинается новый цикл, в первой фазе толчок нарастает к 1000-й, во второй в 1333-й, в третьей в 1666-й и так далее.

Так вот, пока в первой фазе ток возбудил свой максимум в 220 к наступившей 2000-й секунде, вторая фаза ещё этого сделать не успела и возбуждена лишь на минус 160, соответственно разница между ними 220-(-160)=380.

Если бы ток шёл в полной противофазе, тогда бы толчки были бы полностью противоположны и были бы равны 220-(-220)=440.

Ну, а почему между фазой и нулём разница в 220 и так понятно, потому что в фазе напряжение 220, а в нуле ноль: 220-0=220

Разница между напряжениями представленная в виде графика:

Анимированное движение тока в трёхфазной сети для наглядности:

Как мы от сюда видим, когда в одном из проводов ток уже движется во всю, в другом проводе ток ещё не полностью разогнался что бы от него “убегать”, а в третьем он уже перестал разгоняться.

Подведём итог

Из всего изложенного можно сделать вывод, что фазное напряжение в сети 0.4 кВ всегда равно 220 В, в то время как линейное 380 В. Однако не стоит считать, что если значения фазного напряжения ниже, оно становится менее опасным. Редакция Homius со всей ответственностью заявляет, что поражение электрическим током может привести к летальному исходу независимо от того, линейное напряжение в цепи или фазное. Ведь поражение тканям и органам наносит не само напряжение, а сила тока. К примеру, 220 В трансформированные в 36 В становятся даже опаснее. Ведь человек практически не чувствует столь низкого напряжения, а в это время ток поражает органы. Поэтому при электромонтажных работах не следует забывать о технике безопасности.

  • https://grand-electro.ru/baza-znanij/chto-takoe-faznoe-i-lineynoe-napryazhenie.html
  • https://macanprint.ru/otlichiye-lineynogo-napryazheniya-ot-faznogo-napryazheniya/
  • https://SamElectric.ru/powersupply/chem-trehfaznoe-napryazhenie-otlichaetsya-ot-odnofaznogo.html
  • https://aspenergo.ru/lineynoe-napryazhenie-mezhdu-fazami/
  • https://TokMan.ru/osnovy/faznoe-i-linejnoe-napryazhenie.html
  • https://ugstroialyans.ru/napryazhenie-mezhdu-dvumya-fazami-v-trehfaznoy-seti/
  • https://zen.yandex.ru/media/etm_company/pochemu-v-trehfaznoi-seti-2-napriajeniia–380-i-220-volt-602b80f6f4991829409cea81
  • https://samelectrik.ru/linejnoe-i-faznoe-napryazhenie.html
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector