Расчёт балки на прогиб и прочность

Нагрузки на горизонтальное перекрытие

Для расчёта на прочность необходимо знать нагрузки, возникающие в процессе эксплуатации перекрытия. Самые значительные величины возникают на первом этаже жилого здания. Меньшие значения получаются для мансардных конструкций и чердачных помещений. Напряжения в балке возникают:

  • от внутренних строительных конструкций, например, перегородок, лестниц;
  • от веса бытовой техники, мебели;
  • от массы людей.

Статическую нагрузку определяет два основных вида напряжения, – прогиб по всей длине и изгиб в месте опоры.

  1. Прогиб, – получается от веса вышерасположенных элементов. Максимальная стрелка отклонения получается в точке местонахождения объекта с самой большой массой и (или) посередине между опорами.
  2. Изгиб или излом, – это разрушение перекладины в точке заделки. Возникает от вертикальной нагрузки, а сама балка, воспринимающая это напряжение, выступает в роли рычага. С определённой величины усилия начинается критический изгиб, приводящий к разрушению поперечной опоры.

Для уменьшения влияния на прочность деревянного поперечного изделия от внутренних конструкций, их стараются располагать в местах нахождения нижних опор. Бытовую технику и мебель по возможности, целесообразно размещать вдоль стен или около разгрузочных конструкций.

Существует достаточно много типов деревянных балок, но наиболее доступны для широкой массы населения – это изделия прямоугольного или овального сечения. В последнем случае, балка представляет собой оцилиндрованное бревно, обрезанное с двух противоположных сторон.

ОБЩИЕ УКАЗАНИЯ

10.1. При расчете строительных конструкций по прогибам (выгибам) и перемещениям должно быть выполнено условие

(25)

где f – прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с пп. 1-3 рекомендуемого приложения 6;

fu – предельный прогиб (выгиб) и перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);

в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

Ограничения колебаний конструкций следует устанавливать в соответствии с нормативными документами п. 4 рекомендуемого приложения 6.

10.2. Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в п. 5 рекомендуемого .

10.3. Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований – от прямой, соединяющей опоры этих элементов (см. также п. 7 рекомендуемого приложения 6).

10.4. Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора. Прогибы не ограничиваются исходя из указанных требований и для конструкций перекрытий и покрытий над помещениями с непродолжительным пребыванием людей (например, трансформаторных подстанций, чердаков).

Примечание. Для всех типов покрытий целостность кровельного ковра следует обеспечивать, как правило, конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

10.5. Коэффициент надежности по нагрузке для всех учитываемых нагрузок и коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равными единице.

Коэффициенты надежности по ответственности необходимо принимать в соответствии с обязательным приложением 7.

10.6. Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли.

Инструкция к калькулятору

Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.

Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:

  • ширина сечения (толщина), мм;
  • длина пролета балки (на изображении BLN), м;
  • вид древесины (сосна, ель, лиственница…);
  • класс древесины (1/К26, 2/К24, 3/К16);
  • пропитка (есть, нет).

В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.

Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:

  • температурный режим (< 35 °C .. > 50 °C);
  • влажностный режим;
  • присутствуют постоянные повышенные нагрузки или нет.

После этого, сконфигурируйте конструкцию и заполните поля калькулятора:

  • длина стены дома по внутренней стороне, м;
  • шаг между балками, см;
  • полная длина балки (на изображении BFL), м;
  • нагрузка на балку, кг/м2 ;
  • предельный прогиб в долях пролета.

При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.

Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями. Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки

Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.

Кроме того, в блоке «Результаты расчета» вы сможете узнать:

  • параметры балки при расчете на прочность;
  • параметры балки при расчете на прогиб;
  • максимальный прогиб балки, см.

Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.

Выбор размера швеллера на примере

Пусть имеется швеллер, длина которой составляет 6 метров и он имеет шарнирное закрепление. На него действует распределенная нагрузка, величина которой составляет 250 кг/м. Расчет ведется в следующей последовательности:

  1. Максимальное значение момента в профиле швеллера М = 9,81 х 250 х 6²/ 8 / 1000 = 11,04 кН∙м.
  2. Необходимое значение момента сопротивления сечения швеллера, Wн = 11,04 х 1000 / 240 = 46,0 см3 (согласно СНиП 2-23-81 для стали С245 Ry = 240 МПа).
  3. Подбираем по таблице ГОСТ размер швеллера с моментом сопротивления не ниже вычисленного значения 46,0 см3.

Это будет швеллер 12П (У) ГОСТ 8240-97 — значение момента сопротивления 50,8 см3 или швеллер гнутый 140х60х5 ГОСТ 8278-83 — значение момента сопротивления 47,8 см3.

Расчет металлической балки перекрытия

Бывают случаи, когда деревянные балки для междуэтажных или чердачных перекрытий использовать экономически не выгодно. Например, когда пролет слишком большой и поэтому для его перекрытия требуются деревянные балки большого сечения. Или когда у Вас есть хороший знакомый, который торгует не пиломатериалом, а металлопрокатом.

В любом случае не лишним будет знать во сколько может обойтись перекрытие, если использовать металлические балки, а не деревянные. И в этом Вам поможет данный калькулятор. С его помощью можно рассчитать требуемые момент сопротивления и момент инерции, которые для подбора металлических балок для перекрытия по сортаментам из условия прочности и прогиба.

Рассчитывается балка перекрытия на изгиб как однопролетная шарнирно-опертая балка.

Калькуляторы по теме:

Сбор нагрузок на балки перекрытия онлайн.

Исходные данные

Длина пролета (L) — расстояние между двумя внутренними гранями стен. Другими словами, пролет, который перекрывают рассчитываемые балки.

Шаг балок (Р) — шаг по центру балок, через который они укладываются.

Вид перекрытия — в случае, если на последнем этаже Вы жить не будете, и он не будет сильно захламляться милыми Вашему сердцу вещами, то выбирается «Чердачное», в остальных случаях — «Междуэтажное».

Длина стены (Х) — длина стены, на которую опираются балки.

Длина балки (А) — самый большой размер балки.

Вес 1 п.м. — данный параметр используется как бы во втором этапе (после того, как Вы уже подобрали нужную балку).

Расчетное сопротивление Ry — данный параметр зависит от марки стали. Например, если марка стали:

  • С235 — Ry = 230 МПа;
  • С255 — Ry = 250 МПа;
  • С345 — Ry = 335 МПа;

Но обычно в расчете используется Ry = 210 МПа для того, чтобы обезопасить себя от разного рода «форс-мажерных» ситуаций. Все-таки в России живем — привезут металлопрокат из стали не той марки и все.

Модуль упругости Е — этот параметр зависит от вида металла. Для самых распространенных его значение равно:

  • сталь — Е = 200 000 МПа;
  • алюминий — Е = 70 000 МПа.

Значения нормативной и расчетной нагрузок указываются после их сбора на перекрытие.

Цена за 1 т — стоимость 1 тонны металлопроката.

Результат

Расчет по прочности:

Wтреб — требуемый момент сопротивления профиля. Находится по сортаменту (есть ГОСТах на профили). Направление (х-х, y-y) выбирается в зависимости от того, как будет лежать балка. Например, для швеллера и двутавра, если Вы хотите их поставить (т.е. больший размер направлен вверх — и Ι), нужно выбирать «x-x».

Расчет по прогибу:

Jтреб — минимально допустимый момент инерции. Выбирается по тем же сортаментам и по тем же принципам, что и Wтреб.

Количество балок — общее количество балок, которое получается при укладки их по стене X с шагом P.

Общая масса — вес всех балок длиной А.

Онлайн калькулятор для расчёта стойки (колонны) из стального проката

Логика онлайн расчета на прочность и устойчивость стойки из стального проката

Согласно Актуализированной редакция СНиП II-23-81 (CП16.13330, 2011) рассчитывая на прочность элементов из стали при центральном растяжении или сжатии силой P следует выполнять по формуле:

P / Fp * Ry * Yc <= 1

  • где P — действующая нагрузка.
  • Fp — площадь поперечного сечения колонны.
  • Ry — подсчетное сопротивление материала (стали колонны), выбирается по таблице В5 Приложения «В» того же СНиПа.
  • Yc — коэффициент условий работы по таблице 1 СНиПа (0.9-1.1). В соответствии с примечанием к этой таблице (пункт 5) в калькуляторе принято Yc=1.

Проверку на устойчивость элементов сплошного сечения при центральном сжатии силой P следует выполнять по формуле:

P / Fi * Fp * Ry * Yc <= 1

где Fi — коэффициент продольного изгиба центрально — сжатых элементов.

Коэффициент Fi введён в качестве компенсации возможности некоторой не прямолинейности колонны, недостаточной жесткости её крепления и неточности в приложении нагрузки относительно оси стойки.

Значение Fi зависит от марки стали и гибкости колонны и часто берётся из таблицы 72 СНиП II-23-81 1990г., исходя из гибкости колонны и расчётного сопротивления выбранной стали сжатию, растяжению и изгибу.

Это несколько упрощает и огрубляет вычисления, так как СНиП II-23-81* предусматривает специальные формулы для определения Fi. Гибкость (Lambda) — некоторая величина, характеризующая свойства рассматриваемого стержня в зависимости от его длины и параметров поперечн. сечения, в частности радиуса инерции:

Lambda = Lr / i

  • здесь Lr — расчётная длина стержня,
  • i — радиус инерции поперечного сечения стержня (колонны).

Радиус инерции сечения i равен корню квадратному из выражения I / Fp, где I — момент инерции, Fp — его площадь.

Lr (расчётная длина) определяется как Mu*L; здесь L — длина стойки, а Mu — коэфф., зависящий от схемы её крепления:

  • «заделка-консоль»(свободный конец) — Mu=2;
  • «заделка-заделка» — Mu = 0.5;
  • заделка — шарнир» — Mu = 0.7;
  • «шарнир — шарнир» — Mu = 1.

Следует иметь ввиду,что при наличии у формы поперечн. сечения 2-ух радиусов инерции (например, у прямоугольника), при вычислении Lambda используется меньший.

Для их использования необходимо сделать выбор в таблице онлайн калькулятора «Вид, назначение стоек». Предельная гибкость стоек, кроме их геометрических параметров, зависит также от коэффициента продольного изгиба (Fi), действующей нагрузки (P), расчётного сопротивления материала стоики (Ry) и условий её работы (Yc).

Предельная гибкость, устойчивость и прочность стоек, кроме их геометрических параметров, зависит также от коэффициента продольного изгиба (Fi), действующей нагрузки (P), расчётного сопротивления материала стойки (Ry) и условий её работы (Yc).

Если возникнут трудности при расчетах онлайн калькулятором прочности и устойчивости, рекомендуем предварительно ознакомиться с инструкцией.

Расчет балки онлайн

Для расчета балок первым делом необходимо определить усилия, возникающие в конструкциях. В данном разделе показано, как находить усилия, опорные реакции, прогибы и углы поворота в различных изгибаемых конструкциях. Для самых распространенных из них вы можете воспользоваться онлайн расчетом. Для редких – приведены все формулы определения необходимых значений.

Расчет балки на двух шарнирных опорах (Q)

Онлайн расчет балки н/а двух опорах (калькулятор).

Приведен расчет на момент, прогиб и опорные реакции от сосредоточенной и распределнной силы.

Синие ячейки – ввод данных. (Белые ячейки – ввод координаты для определения промежуточного итога).

Зеленые ячейки – расчетные, промежуточный итог.

Оранжевые ячейки – максимальные значения.

>>> Перейти к расчету балки на двух опорах <<<

Онлайн расчет консольной балки (калькулятор).

Приведен расчет на момент, прогиб и опорные реакции от сосредоточенной и распределнной силы.

Синие ячейки – ввод данных. (Белые ячейки – ввод координаты для определения промежуточного итога).

Зеленые ячейки – расчетные, промежуточный итог.

Оранжевые ячейки – максимальные значения.

>>> Перейти к расчету консольной балки <<<

Расчет однопролетной балки на двух шарнирных опорах.

Рис.1 Расчет балки на двух шарнирных опорах при одной сосредоточенной нагрузке

Рис.2 Расчет балки на двух шарнирных опорах при двух сосредоточенных нагрузках

Рис.3 Расчет балки на двух шарнирных опорах при одной равномерно-распределенной нагрузке

Рис4. Расчет балки на двух шарнирных опорах при одной неравномерно-распределенной нагрузке

Рис5. Расчет балки на двух шарнирных опорах при действии изгибающего момента

Расчет балок с жестким защемлением на двух опорах

Рис6. Расчет балки с жестким защемлением на опорах при одной сосредоточенной нагрузке

Рис7. Расчет балки с жестким защемлением на опорах при двух сосредоточенных нагрузках

Рис8. Расчет балки с жестким защемлением на опорах при одной равномерно-распределенной нагрузке

Рис9. Расчет балки с жестким защемлением на опорах при одной неравномерно-распределенной нагрузке

Рис10.Расчет балки с жестким защемлением на опорах при действии изгибающего момента

Расчет консольных балок

Рис11. Расчет однопролетной балки с жестким защемлением на одной опоре при одной сосредоточенной нагрузке

Рис12. Расчет однопролетной балки с жестким защемлением на одной опоре при одной равномерно-распределенной нагрузке

Рис13. Расчет однопролетной балки с жестким защемлением на одной опоре при одной неравномерно-распределенной нагрузке

Рис14. Расчет однопролетной балки с жестким защемлением на одной опоре при действии изгибающего момента

Расчет двухпролетных балок

Рис15. Расчет двухпролетной балки с шарнирными опорами при одной сосредоточенной нагрузке

Рис16. Расчет двухпролетной балки с шарнирными опорами при одной равномерно-распределенной нагрузке

Сервис для автоматизации расчета балки онлайн

Если нужно получить исключительно верные данные в короткие сроки для возведения каких-либо сооружений, решения различных задач и т.д., то специальный калькулятор станет отличным решением проблемы, когда на ручные методы нет времени или желания.

При разработке данной программы расчета использовались:

  • формулы сопротивления материалов различного вида;
  • справочная информация по каждому типу металла;
  • геометрические характеристики различных элементов;
  • справочная информация по подбору сечения балки.

Система делает построение эпюр, которое наглядно демонстрирует результаты в виде графиков, что показывают распределение нагрузки на различные элементы. Притом используя данные реакции, можно построить различные статистически определимые балки. При отсутствии промежуточных шарниров балки могут быть двух типов:

  • конструкция, что базируется на двух шарнирных опорах (следует отличать от промежуточных);
  • с жестким защемлением, т.е. закрепленная, с одной стороны.

Стоит заметить, что все расчетные данные носят теоретический характер. Таким образом, практические результаты могут несколько отличаться, что связано со множеством условий. Впрочем, расчет балки в данной программе может стать основной для правильно построенных величин, при вычислении необходимой конструкции.

Калькулятор балок можно использовать в следующих случаях:

  • расчеты стропил, бруса, перекрытия, однопролетной или двухпролетной рамы, бревна, и т.д.;
  • балки с различными особенностями: наклонные, опорные, с жестким защемлением и т.д.,

для которых необходимо подобрать оптимальное соотношение прочности армирующих материалов на растяжение и прочности бетона на сжатие.

Все это относится к расчету изгибаемых конструкций из железобетона, которые имеют прямоугольное сечение. При расчете консольной балки используется метод сопротивления железобетона.

Сервис позволяет получить расчеты с приведенными формулами, эпюрами усилий, а также произвести подбор сечений балки. Кроме того, информация подана подробно в программе, чтобы пользователи могли без проблем сориентироваться в различных функциях.

В перспективе мы планируем также расширить возможности приложения и добавить расчет металлоконструкций, где для проведения просчета должна быть указана длина металлической консольной балки и вид нагрузок.

Расчет

Чтобы произвести выбор металлического бруса для той или иной конструкции, которая будет нести определённую нагрузку, необходимо произвести расчёт балки на прочность при изгибе. Это можно сделать, рассчитав все параметры самостоятельно по известной методике или воспользоваться онлайн-калькулятором.

Для выбора балки перекрытия, делают проверку из условия на прочность, где максимальная прочность стали должна быть больше суммы отношений максимального изгибающего момента в точке действия той или иной нагрузки к осевому моменту, и поперечных сил и площади поперечного сечения в максимально нагруженной точке.

Для определения всех неизвестных параметров этого условия, вычисления проводят поочерёдно.

ОБЩИЕ УКАЗАНИЯ

10.1. При расчете строительных конструкций по прогибам (выгибам) и перемещениям должно быть выполнено условие

(25)

где f — прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с пп. 1-3 рекомендуемого приложения 6;

fu — предельный прогиб (выгиб) и перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);

в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

Ограничения колебаний конструкций следует устанавливать в соответствии с нормативными документами п. 4 рекомендуемого приложения 6.

10.2. Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в п. 5 рекомендуемого .

10.3. Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований — от прямой, соединяющей опоры этих элементов (см. также п. 7 рекомендуемого приложения 6).

10.4. Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора. Прогибы не ограничиваются исходя из указанных требований и для конструкций перекрытий и покрытий над помещениями с непродолжительным пребыванием людей (например, трансформаторных подстанций, чердаков).

Примечание. Для всех типов покрытий целостность кровельного ковра следует обеспечивать, как правило, конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

10.5. Коэффициент надежности по нагрузке для всех учитываемых нагрузок и коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равными единице.

Коэффициенты надежности по ответственности необходимо принимать в соответствии с обязательным приложением 7.

10.6. Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли.

Расчет сечения железобетонной балки

Правильно рассчитать железобетонные балки получится, если учитывать основные параметры самого изделия и всей конструкции. К числу базовых показателей, на основе которых выполняют расчет, относят габариты и сечение продукции. Алгоритм расчета железобетонной балки следующий:

  • замеры пролета;
  • определение прочности;
  • подсчет высоты элемента из бетона;
  • определение максимального момента;
  • вычисление нагрузки на ЖБ балку перекрытия.

Эти параметры определят, какие железобетонные балки подходят для конкретной ситуации. Прямоугольные элементы применяют чаще, подбирая их сечение с учетом числа этажей.

Таблицы размеров и весов

Независимо от области применения, будь-то строительство или создание малых архитектурных форм, из профилей изготавливаются несущие каркасы для восприятия значительных нагрузок. Следовательно, прочность и надежность созданных конструкций зависит от размеров поперечного сечения.

Чтобы создать единую нормативную базу данных, помогающей определить результаты основных технических характеристик в зависимости от размерной линейки диаметров, введены единые стандарты и ГОСТы на все виды изделий. Эти документы являются регламентирующими и обязательными для всех производителей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector